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Abstract—Imaging spectrometers are valuable instruments for
space exploration, but their large data volumes limit the number
of scenes that can be downlinked. Missions could improve science
yield by acquiring surplus images and analyzing them onboard
the spacecraft. This onboard analysis could generate surficial
maps, summarizing scenes in a bandwidth-efficient manner to
indicate data cubes that warrant a complete downlink. Addi-
tionally, onboard analysis could detect targets of opportunity
and trigger immediate automated followup measurements by the
spacecraft. Here we report a first step toward these goals with
demonstrations of fully automatic hyperspectral scene analysis,
feature discovery and mapping onboard the EO-1 spacecraft.
We describe a series of overflights in which the spacecraft
analyzes a scene and produces summary maps along with lists of
salient features for prioritized downlink. The onboard system
uses a superpixel endmember detection approach to identify
compositionally distinctive features in each image. This procedure
suits the limited computing resources of the EO-1 flight processor.
It requires very little advance information about the antici-
pated spectral features, but the resulting surface composition
maps agree well with canonical human interpretations. Identical
spacecraft commands detect outlier spectral features in multiple
scenarios having different constituents and imaging conditions.

Index Terms—Endmember detection, Hyperspectral Imagery,
Pattern Recognition, Spacecraft Autonomy, Remote Planetary
Geology, Mineralogy

I. INTRODUCTION

IMaging spectrometers provide information about surface
composition over wide areas along with morphological

context. This rich information makes them highly valuable
for planetary exploration. Noteworthy examples include the
Moon Mineralogy Mapper (M3) [1], and the Compact Recon-
naissance Imaging Spectrometer at Mars (CRISM) [2], [3].
Future missions could use imaging spectrometers for an even
wider range of targets including volatiles or mineralogically-
distinctive units on asteroids [4], anomalous exposures dur-
ing rover site surveys of Mars [5], atmospheric phenomena
measured by outer planet orbiters [6], and organic materials
on icy bodies [7]. Imaging spectrometers could also play
a role in cubesat-scale exploration [8]. Unfortunately these
sensors require a high data volume, and communications band-
width cannot typically support the maximum imaging rate.
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For example, the CRISM investigation will return multiple
Terabytes of data but cover only a very small fraction of the
planet’s surface at full resolution. Overall, extreme bandwidth
requirements limit imaging spectrometers to a small fraction
of their potential duty cycles.

Onboard data analysis could help address this challenge.
Spacecraft could acquire spectra at the maximum imaging
rate, analyze the result onboard, and detect important features
for priority downlink. The onboard analysis could ensure that
ground operators do not miss anomalies of scientific interest.
Spacecraft could draft mineralogical maps describing scene
constituents using a small fraction of the normal data volume
[9]. Such summary products could inform operator decisions
about which of the full-resolution data cubes to retrieve
from the spacecraft. Finally, onboard feature recognition could
trigger immediate spacecraft responses such as followup ob-
servations at higher resolution [10]. In this fashion a spacecraft
could respond directly to targets of opportunity, overcoming
the delay of round-trip communications and spacecraft com-
mand sequencing [11]. Overall, onboard analysis could make
imaging spectrometers applicable to a wider range of missions
and multiply their yield in current exploration applications.

Real time hyperspectral feature discovery in planetary
scenarios is a challenging problem, with unique difficulties
that exclude many techniques developed for ground-based or
airborne analyses. First, unexpected spectral shapes are often
observed so the retrieval algorithms should not be too specific
or limited only to known targets. Most terrestrial mapping
methods rely on examples drawn from previous images, lab-
oratory or in situ spectra. This is not always appropriate for
planetary exploration, where spectra could vary significantly
due to substrate, ambient temperature, atmospherics and min-
eralogy. We also desire the ability to discover and map features
that have not yet been seen before.

Second, planetary hyperspectral images are generally noisier
than terrestrial and airborne data. Orbitally-acquired spectra
have intrinsically low Signal to Noise Ratios (SNRs), and often
contain non-Gaussian artifacts from their harsh thermal and
radiation environments. This has led planetary image analysts
to a variety of special methods such as averaging over large
spatial regions to reduce noise, and ratioing to improve the
contrast of spectral features [3], [12], [13]. Applying these
methods effectively requires considerable human artistry and
direction. Authoritative interpretations may require days of
attention by a trained analyst. Autonomous explorer spacecraft
must provide the essential information required to permit these
interpretations, but without the benefit of operator oversight.
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The system must have a minimum of free parameters, and it
should function effectively for all scenes on the first try.

Finally, spacecraft power and computational resources are
highly constrained. Volatile memory is limited, and flight
processors are often orders of magnitude slower than the
terrestrial state of the art. This precludes most typical anal-
ysis pipelines. Recent efforts have turned to dedicated hard-
ware, with numerous ground-side simulations using Field Pro-
grammable Gate Array (FPGA) coprocessors to perform end-
member discovery [14]–[17], spectral unmixing [18], matched
filter target detection [19], and compression [20], [21]. How-
ever, software implementations could still be important for
cubesat-scale missions with constraints on system complexity,
mass and power consumption [22]. Software implementations
can also play an important role for spacecraft retrofits and
“extended mission” demonstrations on existing spacecraft
hardware. Consequently computational efficiency remains a
key challenge for an initial proof of concept.

This work demonstrates automatic feature discovery and
scene summary onboard the Earth Observing One (EO-1)
spacecraft. We apply a superpixel endmember detection ap-
proach to detect spectrally-distinctive features [23], [24]. The
spacecraft acquires an image, automatically segments and
analyzes the image to detect spectral endmembers, and then
forms a simple compositional map. The system can process an
entire image using EO-1’s 12MHz fixed-point flight processor
and only 16MB of volatile memory. The resulting summary
product describes the entire scene contents using the endmem-
ber features and the map. This 20KB summary reduces the
raw data to less than 1% of its original volume. Nevertheless
it preserves relevant spectral and spatial information about
the key constituents and as well as anomalous outliers. The
analysis is based on intrinsic properties of the scene, and thus
does not require prior knowledge of the features that will
be observed. Under these difficult constraints the result still
resembles canonical maps produced using accurate airborne
data and field expertise.

The following section describes the flight algorithm and
approach. The subsequent section describes experiments that
took place over repeated trials during the period of September
2011 to February 2012. We examine overflight acquisitions
of several scenes of mineralogical and scientific interest, and
compare the downlinked results from the onboard system to
typical expert analyses. Finally, we close with a discussion of
potential improvements and applications.

II. APPROACH

The Earth Observing One (EO-1) spacecraft has been in
continuous operations since November 2000. It hosts the
hyperspectral imager Hyperion, the first imaging spectrometer
to operate from space. It has produced over 30,000 images
of the Earth’s land surface and oceans. The scenes have a
spatial footprint of 7.5km across track and nearly 100km down
track, with a resolution of approximately 30 meters per pixel
at nadir, a spectral resolution of 0.38 to 2.5µm wavelengths,
and channel widths of approximately 10nm Full Width at
Half Maximum (FWHM) [25]. Its primary applications include

geology, mineralogy, land use mapping, and ocean color
analyses.

Since 2004, EO-1’s extended mission has also pioneered a
range of autonomy software. The Autonomous Sciencecraft
Experiment [26] enables onboard processing of Hyperion
instrument data to detect science events and features. These
include thermal hotspots corresponding to volcanism [27],
cryosphere [28], flooding [29], and sulfur [30]. The data anal-
ysis involves classifying individual pixels into discrete types
such as snow, water, ice, land, and clouds. Operators construct
classifiers in advance using libraries of collected images. At
runtime, the onboard detection enables autonomous response
in the form of an alert message, prioritized downlink of science
products or subimages, and possibly followup acquisitions on
a later overflight.

There are many diverse methods for hyperspectral signal
detection and mapping, but not all methods in current use are
suitable for fully-automatic spacecraft operations. The CRISM
mineral indices [31] typify classification rules constructed
from band ratios and geometric depths of absorption features;
they yield numerical scores which suggest the abundance of
known target minerals and absorption features. Tetracorder
[32] is a comprehensive classification and mapping system
based on an expert system combined with a library of spectra.
Other analysis strategies include Support Vector Machines
(SVMs) or other machine learning approaches. These are
generally tuned to specific classes and require extensive train-
ing sets, though some recent advances have been made with
library spectra [33]. Finally, matched filtering and partial
unmixing methods such as Mixture Tuned Matched Filtering
[34] detect specific target signatures using an estimate of the
scene background.

The goal of this work was to demonstrate a more general
analysis technique that would map and summarize components
of a scene without requiring advance training or a target sig-
nature library. We favor automatic endmember detection and
mapping [35] to summarize constituents and outlier features
based on intrinsic scene constituents alone. We treat the Hyper-
ion observed spectrum as a vector of reflectance measurements
at different wavelengths s ∈ Rn. Under a simple aereal linear
mixing model [36] the observed reflectance spectrum is the
product of a matrix E whose rows are spectral endmembers,
with a vector of nonnegative mixing coefficients u, subject to
a noise term N . For simplicity N is typically assumed to be
zero-mean Gaussian distribution.

s = Eu+N (1)

Assuming the actual undiluted endmembers are all present in
the image, their locations and spectra can summarize the scene.
They indicate main constiuents as well as outliers representing
compositionally distinctive features of scientific interest. Fur-
thermore, endmember spectra can easily be subjected to post-
analyses by a classifier, library, or matched filter to ascribe
semantic interpretation and automatically schedule appropriate
followup activities [37].

For these reasons, and because it makes few assumptions
about the target spectra, automatic endmember detection [35],
[36] is a compelling option for scene summary. Thorough
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Fig. 1. Architecture for automatic spectral discovery and mapping on EO-
1. The traditional operations approach involves a slow path for caching and
downlink of large data volume full images (outside loop). The new onboard
system permits faster downlinks of lightweight summary products in regular
telemetry; this could potentially improve the effective coverage and turnaround
time.

reviews of these algorithms can be found in [38] and [39]. Pop-
ular algorithms include the Pixel Purity Index (PPI) approach,
which looks for extreme pixels in random linear projections
[40]; N-FINDR [41], which looks for the subset of pixels
defining the largest volume; and Vertex Component Analysis
(VCA) [42], which grows an endmember set by computing
the subspace spanned by the current set and projecting the
data onto a new orthogonal direction. These methods are all
somewhat sensitive to noise since numerical outliers often
appear as endmembers. Hyperion pixels, like spacecraft hy-
perspectral imagers in general, suffer from some level of noise
– both single-pixel errors, channel errors, as well as column
striping effects. Here we detail an automatic scene summary
that has favorable computational efficiency and reliably detects
physical endmembers in the presence of noisy pixels. We
exploit the spatial dimension similar to previous work by [43]–
[45]. Specifically, we use a superpixel endmember detection
approach described previously in work by Thompson et al
[23].

Figure 1 shows the system architecture. Retrieving a full
spectral image from EO-1 flight recorder typically requires
several days for queuing and transmission. This is also typical
for exploration missions. In contrast, the onboard analysis
produces a 20KB summary that fits in a direct downlink on
the same day as the acquisition. Tactical summaries delivered
on these timescales could be a significant benefit for explo-
ration since they would arrive in time to help plan followup
measurements and navigation decisions for the next command.
Independently, they could also inform selective downlink of
full data from the most interesting scenes. The following
sections describe the onboard processing steps in greater detail.

A. Preprocessing

The Hyperion spectrum contains 220 bands from two detec-
tors. One covers the Visible and Visible Near Infrared (VNIR)
and the other covers the Short Wave Infrared (SWIR). Some
of these bands can be made accessible to the flight computer
through a procedure that loads them into an accessible memory
area. This space is limited so only 12 bands can be analyzed
onboard at one time. Additionally, it is a software system
requirement that one band be included from both detectors.
We found noise and reflectance differed dramatically between
the two detectors. This impacts analyses based on Euclidean
spectral distance since one detector always dominates the
other. Fortunately both detectors contain atmospheric absorp-
tion features, the values of which are set to zero. Thus we
solve the two-detector problem by assigning a single dedicated
channel to one of these zeroed frequencies. This leaves a free
budget of 11 bands for onboard spectral analysis in the other
detector. It ensures data remains well scaled, and satisfies
system constraints.

Our experiments evaluate two band selections: a VNIR and
SWIR band set, with 11 effective bands each (Table I). We
inspected previous Hyperion images to find frequencies that
were least prone to artifacts such as pushbroom column stripes,
and favored these clean channels. Otherwise we spaced the
band selection within each window to evenly cover spectral
regions having significant biological and mineralogical absorp-
tion features. Exploration missions with particular target ma-
terials could optimize band selection to more specific spectral
signatures, improving sensitivity at some cost to generality.

The onboard algorithm first converts the initial EO-1 ra-
diance image into a pseudo-reflectance product using the
procedure of Knapp [46]. This transformation assumes a
nominal solar spectrum and a simple Lambertian surface. For
a hyperspectral pseudo-reflectance image Ijλ with pixel j and
channel λ we use the following reflectance correction based on
reflected radiance Lλ from the image data. This is a function
of both solar zenith θ and look angle φ, and irradiance from
a nominal solar spectrum Fλ :

Ijλ =
Lλ(θ, φ)

Fλ cos θ
(2)

We compute solar irradiance separately for each channel. The
total irradiance Fλ also incorporates an Earth/Sun distance
that depends on the date of acquisition. We do not consider
scene-to-scene or cross-track differences in channel centers.
On-orbit calibrations suggest these are less than 5 nm [47], and
the solar input model is smooth enough that such differences
are not significant. The solar correction procedure is identical
to the flight routines used by previous classifiers onboard
EO-1 [28], [48]. The onboard memory permits an image of
size 256×1024 (256 columns, 1024 rows), and all subsequent
analyses presume subframes of this size.

B. Superpixel Segmentation

The next step transforms the pseudo-reflectance image I
into a segmented representation by partitioning it into a
disjoint set of pixel clusters. Each of these segments, or
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VNIR Band nm
16 508.2
20 548.9
25 599.8
30 650.7
33 681.2
36 711.7
39 742.3
42 772.8
45 803.3
48 833.8
52 874.5

SWIR Band nm
196 2113.0
198 2133.2
202 2173.5
204 2193.7
205 2203.8
207 2224.0
208 2234.1
211 2264.3
214 2294.6
219 2345.1
221 2365.2

TABLE I
BAND SELECTIONS AND WAVELENGTHS FOR VNIR AND SWIR SCENES.

ALL WAVELENGTHS ARE GIVEN IN NM.

superpixels, contains multiple contiguous image pixels Ij
that are spectrally similar. The details of this process have
been described in previous work [23], [24]. In brief, the
segmentation shatters the pixel grid into an 8-connected graph
with nodes connected by arcs representing Euclidean spectral
distance, and then iteratively joins those nodes using an ag-
glomerative clustering algorithm [49]. Other segmentation and
spatial smoothing strategies include Markov Random Fields
[50], watershed methods [51], or anisotropic diffusion [52].
Here we found graph agglomeration offered a good balance
of reliability, simplicity and speed.

For each clustering iteration the internal difference of a
segment S is the largest weight in the segment’s minimum
spanning tree, MST(S), biased by a size term based on the
area |S|. For user-selectable constant β:

dint(S) = max
(Ii,Ij)∈MST (S)

‖Ii − Ij‖2 +
β

|S|
(3)

The between-segment distance denotes the similarity of adja-
cent clusters Sa and Sb. It is the minimum spectral distance
between any of the pixels on the boundary. We define a
boundary set B(Sa, Sb) for all neighboring pixels Ii ∈ Sa
and Ij ∈ Sb. The between-segment distance is:

dbet(Sa, Sb) = min
(Ii,Ij)∈B(Sa,Sb)

‖Ii − Ij‖2 (4)

We merge clusters according to the Felzenszwalb method [49]
that merges neighboring regions when the between-segment
distance is smaller than the minimum of either internal weight,
e.g. when the following criterion is satisfied:

dbet(Sa, Sb) < min(dint(Sa), dint(Sb)) (5)

The main advantage of this method is that it scales linearly
when edges are sorted by weight, or n log n in the general
case where n is the number of pixels. A relatively stable
parameter β controls superpixel size. We set β to produce
segments with areas of approximately 100. We also enforce
a minimum superpixel area of 20, merging smaller regions
to their nearest adjacent clusters in a final cleaning step as
per [49]. This size range was determined on test images

Fig. 2. A small portion of Taylor glacier (R: 650.6nm, G: 599.8nm, B:
548.9nm) showing a superpixel segmentation of the 11 VNIR bands. Segments
cover contiguous regions that are spectrally homogeneous. Segmentation
parameters are identical to those which ran onboard.

to provide consistent performance across scenes, balancing
noise-robustness and sensitivity to small features. We set
these segmentation parameter values once, and then held them
constant for all EO-1 experimental trials.

The mean spectra s of all superpixels S form a new
representation for the image, reducing the number of data
points for later processing.

s =
1

|S|
∑
Ii∈S

Ii = Eu+N (6)

This leads to multiplicative speed benefits, and makes end-
member detection suitable for use on EO-1. It guarantees a
data set reduction by an order of magnitude at the outset,
with considerable reduction in noise outliers (Figure 2). In
practice, the spatial averaging improves the robustness of later
processing and is critical for accurate endmember extraction
in the presence of noise [23]. The superpixels themselves are
more credible spectral averages over contiguous physical areas
of the surface, improving the interpretability of the result.

C. Endmember Detection

The next step selects superpixels to form the set of end-
members E = {e1, . . . en}. We use a Sequential Maximum
Angle Convex Cone (SMACC) method [53], similar to Gram
Schmidt Orthogonalization. It sequentially selects superpixels
to maximize the angular projection onto an ever-growing
convex cone of endmembers. As in [53], we initialize the
endmember set E = {e1} to contain the superpixel whose
mean spectrum s has the largest norm, and then remove it
from all remaining superpixel spectra by projection:

s′ = s− e1ψ1
se1
|e1|

This is an orthogonal projection if ψ1 = 1 or an oblique
projection for the more general case of 0 ≤ ψ ≤ 1. We
continue this process with subsequent iterations, sequentially
adding vectors with maximum residuals to the expanding basis
set, updating the projections while maintaining the constraint
that ψ ≥ 0 for all pixels and basis vectors so that the result
is physically interpretable in terms of mixing quantities. The
result is a set of endmembers of which the other spectra in
the scene are convex combinations. This satisfies the original
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linear mixing model. Note that many other endmember detec-
tion algorithms might work for this stage, but SMACC has the
specific advantage of being a sequential method that can return
variable numbers of endmembers in rank-ordered priority.
Additionally, it is deterministic and therefore reproducible.

Ground operations can still play an important role in in-
terpreting the resulting endmember spectra. The endmember
detection method rests on a pure pixel assumption, i.e. it
cannot infer mixed subpixel components. Instead it returns
the most distinctive instances of the spectral signatures where
they appear in the image. This still allows manual subpixel
interpretation on the ground, where one can identify trace
materials having sufficiently distinctive spectral features. An-
alyst interpretation is also helpful to recognize redundant
endmembers. In this work we retrieve an over-complete set of
30 endmembers. This is much larger than the actual intrinsic
dimensionality of the data or the number of distinct materials
we expect [54]. A large conservative set compensates for
the simplicity of the linear mixing model and the fact that
SMACC may detect extra materials through differences in
illumination, thermal emissivity (for SWIR bands), instrument
or continuum effects. For example, uncorrected spectral smile
occasionally causes extra endmembers at the edge of the
Hyperion swath. Intentionally overestimating the number of
endmembers ensures that these redundant bases do not crowd
out more numerically subtle (but compositionally distinct)
spectra. Extra endmembers also give a margin of error to
handle numerical outliers in shadowed or cloudy areas. These
redundant endmembers cost relatively little bandwidth, since
the resulting classification map has a bit depth that grows with
the logarithm of the total number of endmembers. One can
easily recognize duplicates or outliers by inspecting the spectra
and their matching areas in the scene.

D. Mapping

In the final stage of processing, the onboard system gen-
erates a simple scene summary based on the spectral angle
(a normalized dot product) between each superpixel spectrum
and each endmember spectrum [55]. This indicates the spatial
extent of observed features but avoids the computational
complexity of a full spectral unmixing [36]. We compute an
integer-valued composition map with an index ci for each
superpixel Ii. This is the index of the endmember that is
spectrally closest to that superpixel.

ci = argminj
ejsi
‖ej‖‖si‖

(7)

The onboard system communicates this integer composition
map, along with the locations and spectra associated with the
endmember superpixels. Together these allow the analyst to
reconstruct an approximate map of all the spectra in the scene
using a data product approximately 20KB in total volume.
Each pixel’s integer classification requires just 5 bits, and it is
highly compressible due to the contiguity of the labeled image
regions.

Each stage of processing required special care to satisfy
EO-1 onboard memory and processing constraints. The flight
computer carries a Mongoose-V 32-bit microprocessor clocked

at 12 MHz. It lacks a hardware floating point unit, so all
calculations involving decimal numbers must be implemented
purely in software emulation. Also, onboard data analysis and
autonomy tasks must share the processor with the spacecraft
control and flight operations tasks. Onboard memory capacity
constrains both specific data analysis tasks and the amount of
Hyperion data that may be processed.

III. EVALUATION

A. Scenes

We consider the period from September 2011 to February
2012, during which the system performed six distinct acqui-
sitions. These overflights imaged four different locations:

1) Cuprite, Nevada: The Cuprite mining district has been
well-studied from air, space, and ground. It has become a
benchmark standard for comparing hyperspectral detection
performance. Here we use it to characterize detection perfor-
mance as well as mapping fidelity in a region with multiple
distinctive mineral classes. Cuprite is an acid-sulfate hy-
drothermal system exhibiting well-exposed kaolinite, alunite,
muscovite, and calcite, as well as some silica [56]. All minerals
have distinctive and unique absorption features in the 2.1-
2.4µm range, so we use the SWIR band set. We commanded
two overflights on 19 and 27 September 2011. Both observed
the scene with virtually cloudless conditions.

2) Steamboat Hot Springs, Nevada: Steamboat Hot Springs
are an active volcanic geothermal area with a long history
of remote and in situ observations [57], [58]. The exposed
structure consists of a hydrothermal silica feature. Of relevance
to remote sensing, spectral signatures of alunite and kaolinite
are also present [58]. These features have been extensively
mapped from both AVIRIS and Hyperion data, and we use
these maps as a ground truth standard for onboard analysis.
This EO-1 overflight aimed to detect and map the silica sinter
and alunite features. We favored the SWIR band set where both
kinds of minerals have distinctive absorption signatures. A
single trial took place with acquisition over moderately cloudy
skies (30% cloud cover).

3) Mammoth Hot Springs, Wyoming: Mammoth Hot
Springs is located in Yellowstone national park [59]. It consists
of a thermal springs system with nearby pools and streams
occupied by etxtremophilic bacteria. This makes the site an
interesting astrobiology analogue. The bacterial colonies have
features visible in the EO-1 VNIR band set. However, we
calculated in advance that their absorbing area would only
subtend a very small fraction of the 30m Hyperion pixel,
and instead expected to see the entire hot springs system
as a single feature. This evaluates the system for the role
of detecting a small, isolated but compositionally-distinctive
region in a large scene. Two overflights observed the scene
under very different cloud conditions; the first took place under
clear skies, while the second had cloud cover of 70%. The
sinter feature was visible in both scenes, which provides an
interesting comparison of the effect of clouds on VNIR scene
analysis.
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4) Blood Falls, Antarctica: Blood Falls gets its name from
the bright red color of oxidized iron staining the ice at the
northern terminus of Taylor Glacier in the McMurdo Dry
Valleys of Antarctica. The iron source is an intermittent highly
saline discharge from a subglacial brine. Iron released by
Blood Falls is actually reduced, which is likely related to a
microbial consortium that reduces iron as part of a catalytic
sulfur cycle [60]. Contact with the air oxidizes the iron and
leads to a visible signature of the discharge within VNIR
spectral regions. Isolated subglacial ecosystems such as these
are astrobiology analogs for potential cold-wet habitats on
both Mars and Europa [61], [62]. Recent reanalysis of “chaos”
regions on Europa suggest that brine from below the ice shell
may be percolating through to the top of the ice as part of
the active resurfacing in these areas, possibly allowing similar
discharges to those observed at Blood Falls [63]. Therefore,
remote detection of signatures from these and other analog
environments is critical for planning life detection missions
to cold targets [30]. In addition, from a detection standpoint,
Blood Falls (like Mammoth Hot Springs) provides a test for
detecting a small, isolated anomalous feature of interest in a
large scene without prior knowledge of the target spectrum.

Due to the season the solar incidence angle was generally
low (∼ 45 degrees) causing suboptimal signal to noise for all
images. This makes target detection difficult; analysts have
noticed mixed mapping performance from Hyperion under
comparable SNR conditions [64]. Table III shows imaging
conditions for each scene, with Signal to Noise Ratio calcu-
lated using local means as in the Gao method [65]. The only
significant operator-tuned parameters of the onboard analysis
are the band selection and the segmentation settings. We
set the segmentation parameters in advance using previous
Hyperion images of Cuprite, and held them constant across
all experiment runs and locations. Table III also reports Look
Angle (LA), Solar Zenith Angle (SZA), and Cloud Cover
(CC) values from the Hyperion catalog. Finally, Table II
shows the target positions as well as data product IDs and
runtimes for the total algorithm (TTot), segmentation (TSeg),
and endmember detection (TSMACC) stages.

The time required for the onboard analysis varies widely,
even for constant-time operations such as the SMACC end-
member detection. Data-handling operations, preprocessing,
and preparation of the final summary data products all con-
tribute to the total runtime. We attribute the variable runtimes
to concurrent processor usage by other tasks, rather than in-
trinsic variability in the algorithm. The segmentation operation
of the Blood falls run took an unusually long time, which is
likely caused by additional processes taking processor priority
during this critical polar phase of the EO-1 orbit.

B. Results

We examined the fidelity and interpretability of the teleme-
try summary products. We transformed the telemetry into draft
mineralogical maps by identifying key spectra from the set
of 30 returned endmembers, and coloring all the pixels in
the downlinked image which had been assigned to that class.
Figure 3 below shows the result for the two Cuprite runs. The

colors match a previous map by Kruse et al. [54], [64], gen-
erated through spectral endmember identification and MTMF
mapping; these maps are reprinted here for comparsion. The
two maps demonstrate that automatic discovery of Alunite
(A, D) and muscovite features (B, F, G) is most reliable
across the two images. Intermittant calcite (C, H) and kaolinite
signatures (D,E,G) also appear. The alunite endmember is
highly prominent in this band selection, and appears as the
second endmember for each run. Figure 4 shows the 11-band
endmember spectra associated with these regions, computed
and downlinked in telemetry.
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Fig. 4. Cuprite spectra for the first run. We show the mineralogically
relevant subset here, excluding endmembers that are obviously noisy, neutral
or redundant.

While the returned 11-band spectra show diverse content,
their spectral coverage makes it difficult to verify some di-
agnostic features such as the alunite absorption at 2300nm.
To support our physical interpretation we computed the full
spectrum on the ground. System constraints mean that just
one row and column value are transmitted indicating the
location of each endmember superpixel; its shape is unknown
so we cannot exactly reconstruct the full endmember spectrum.
However, we estimate it here by averaging the full spectra all
the matching pixels in the integer map. Specifically we use the
average full spectrum of the pixels in the 220-band reflectance
data that are located within 50 pixels of the row, column
target, and that match best to the appropriate endmember in
the automated map. This yields a complete spectrum for the
endmember, and suggests the results that might be expected
from a followup acquisition, or even in immediate telemetry
if the spacecraft were configured with onboard access to
the full-spectrum data. The dotted lines in Figure 5 show
these reconstructions. To assist interpretation we align the
downlinked spectra with a vertical contrast stretch to match
the vertical range of the full spectrum result.

The full spectra are consistent with the mineral classes
for each of the minerals in the cuprite scene. In particular,
absorption features of alunite, calcite, muscovite, and poten-
tially kaolinite are visible in both the quicklook and the full
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Target Lat Lon Date TTot TSeg TSMACC ID
1. Cuprite 37.566 -117.200 19 Sep 2011 274.7m 172.1m 46.9m EO1H0410342011262110KF
2. Cuprite 37.566 -117.200 27 Sep 2011 229.2 134.4 54.4 EO1H0410342011270110KF
3. Steamboat 39.39 -119.75 3 Oct 2011 238.3 158.0 40.5 EO1H0430322011276110KF
4. Mammoth 44.969 -110.706 20 Oct 2011 215.1 141.7 39.7 EO1H0380292011293110PF
5. Mammoth 44.969 -110.706 25 Oct 2011 267.4 154.5 59.0 EO1H0380292011298110KF
6. Blood Falls -77.722 162.274 7 Feb 2012 634.2 569.8 34.4 EO1H0571152012038110KF

TABLE II
SCENE LOCATIONS, RUN TIMES (IN MINUTES), AND PRODUCT IDS.

Target Bands SNR LA SZA CC Detections (Rank)
1. Cuprite SWIR 19.97 -22.28 43.27 0% Alunite (2) Muscovite (3), Calcite (27)
2. Cuprite SWIR 18.63 -8.64 44.70 0% Alunite (2), Muscovite (16), Calcite (7), Kaolinite(29)
3. Steamboat SWIR 7.49 22.24 46.36 30% Silica Sinter (7), Alunite/Kaolinite (22)
4. Mammoth VNIR 11.96 -2.62 57.94 0% Thermal springs (1)
5. Mammoth VNIR 7.42 -13.93 60.06 70% None (failure)
6. Blood Falls VNIR 8.02 2.09 71.55 0% Glacial outflow (27)

TABLE III
PARAMETERIZATION, IMAGING CONDITIONS, AND DETECTIONS. WE REPORT EMPIRICAL SIGNAL TO NOISE (SNR), LOOK ANGLE (LA), SOLAR

ZENITH ANGLE (SZA), AND CLOUD COVER (CC)
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Fig. 14. MTMF mineral maps for (left) AVIRIS and (right) Hyperion produced for the endmembers in Fig. 12 for the Cuprite, NV site. Colored pixels show the
spectrally predominant mineral at concentrations greater than 10%.

produced for the northern Death Valley site: 1) a detailed min-
eral map showing minerals and mineral variability (Fig. 15) and
2) a basic mineral map produced by combining occurrences of
similar minerals (Fig. 16).

C. Discussion

Visual comparison of the AVIRIS and Hyperion mineral
maps for both sites shows that Hyperion generally identifies
similar minerals and produces similar mineral-mapping results
to AVIRIS. Our results indicate, however, that the lower SNR

of the Hyperion data does affect the ability to extract charac-
teristic spectra and identify individual minerals (Figs. 12–15).
Specifically, compare the Hyperion buddingtonite spectrum
in Fig. 12, which does not clearly show the characteristic
buddingtonite spectral feature shape near 2.11 m, to the
well-resolved feature extracted from AVIRIS (Fig. 12) and
other hyperspectral aircraft data [11], [14]. Note that while it
generally appears that the difference in pixel size (30 m for
Hyperion versus approximately 16 m for AVIRIS) is minimal
(causing only slight loss of spatial detail in Hyperion results),
some of the spectral difference could be an effect of the

Fig. 3. Mineral maps of Cuprite, Nevada. Left, Left Center: Automated map generated by the EO-1 onboard data analysis and downlinked to the ground.
Right Center: Map of Cuprite, Nevada by Kruse et al. using AVIRIS airborne data [54]. Right: Map of Cuprite from Kruse et al. using Hyperion Data.

spectrum. Kaolinite and alunite are often mixed together in the
same detection. While there is poor spectral coverage of the
alunite absorption feature at 2300nm, the shape of the 2200um
absorption feature helps to distinguish this spectrum from
pure kaolinite. The detection is consistent across both cuprite
scenes. Table IV reports spectral angle distances between
spectra in the two cuprite maps. The map’s endmember spectra
downlinked from EO-1 on the second overflight all match to
appropriate spectra in the first overflight, and vice versa. This
match uses the 11-band pseudo-reflectance spectra transmitted

within a few hours of acquisition.

Figure 6 shows a similar comparison for the Steamboat
Springs run. We produce the map using the quicklook down-
link as before. Two endmembers from the list correspond
well with kaolinite/alunite (I) and hydrothermal sinter (J)
features. A small cloud is visible in the upper portion of the
image. We provide another image from the Kruse et al. work,
generated using spectral endmember identification and MTMF
mapping [64]. This run evidences good agreement with both
the mineralogical content as well as the morphology of the
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Fig. 5. Cuprite spectra for the second run. Left: reflectance spectra transmitted from the spacecraft. Right: Full reflectance spectra. Dotted lines show the full
spectrum associated with their map regions in the reflectance data computed from the full downlink. They verify some spectral features that are not obvious
in the 11 band quicklook, such as the alunite absorption at 2300nm.

D. Alunite E. Kaolinite F. Muscovite 1 G. Muscovite H. Calcite
A. Calcite 0.098 0.072 0.082 0.082 0.038
B. Muscovite 0.130 0.071 0.047 0.071 0.091
C. Alunite 0.015 0.142 0.114 0.142 0.126

TABLE IV
SPECTRAL ANGLE MEASURED BETWEEN ASSOCIATED 11-BAND SIGNATURES IN THE TWO CUPRITE RUNS.

two mineral regions. Figure 7 shows the resulting spectra.

I 
J 

Fig. 6. Left: Automated map generated by the EO-1 onboard data analysis
and downlinked to the ground. Right: A previous map by the analyses of
Kruse et al. using the Mixture Tuned Matched Filter (MTMF) approach [64].

Figure 8 shows the result of run 4 over Mammoth Hot
Springs in Yellowstone. Previous studies of this area at

2.1 − 2.4µm have revealed a carbonate (CO3) feature in the
SWIR [59]. Here we use VNIR bands, similar to previous
field studies by Hellman et al. [66]. The EO-1 onboard system
overflies the target, and detects this small region as the most
significant endmember in the scene. As expected, the detection
has segmented the Mammoth Falls terraces into multiple
superpixels, averaging their spectra and precluding detection of
subtler subpixel extremophile signatures. However, the overall
morphology and position is a good match to the hot springs
feature. The right panel shows a view from the ground. A
repeat overflight with 70% cloud cover failed to detect the
hot springs; the feature’s location was assigned to the 30th
endmember which was located elsewhere in the scene. Cloud
features dominated the detection results for that run. These
stand out numerically due to their high albedo and spectral
variability.

Finally, figure 9 shows the detection result for Blood Falls,
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Fig. 7. Steamboat springs endmember spectra.

Antarctica. The inset panel shows the outflow as viewed from
the context image (left), the downlinked map (center), and
the ground (right). The system successfully detects the target,
finding a unique endmember at the expected outflow location.
This endmember also matches a to a second superpixel on the
opposite side of the channel (not shown here). It is possible
that this second site is a concentration of iron oxides pooling
at the opposite shore.

IV. DISCUSSION

The initial experiments show promise for discovery and
mapping of novel mineralogy as well as transient non-
mineralogical phenomena. The system manages this result
despite modest computational resources and a 20KB downlink
limit. Such constraints are not intrinsic to the approach and
relaxing them slightly would permit some obvious enhance-
ments. It would be natural to add a confidence score showing
the strength of each superpixel’s best match. This would
add small marginal bandwidth cost, but an indication of
ambiguous regions could significantly improve interpretability.
Using the full spectral range could improve performance of the
segmentation, detection, and downlink stages.

Such analyses could already be feasible for spacecraft with
modern flight processors and floating-point hardware. Future
implementations could further reduce run times by exploiting
more recent avionics systems and specialized hardware. For
example, coprocessor implementations of unmixing algorithms
have already been tested extensively on ground-side processing
[16], [17]. A coprocessor to estimate abundance ratios could
enable an even more powerful and informative summary
product [18]. Segmentation and endmember detection have
parallelizable variants, making the analysis suitable for next-
generation parallel computing architectures such as multi-
core systems. Multi-core architectures offer a fluid pool of
computing resources that could be directed as needed to
standard compression or spectral discovery.

More generally, the EO-1 experiments represent just one
extreme point on a trade space of bandwidth solutions with
different complexity and resource requirements. Table V
shows a non-exhaustive list. At one extreme, state of the art
compression methods provide compression ratios up to 2-3

[67]. Recent algorithms include the Fast Lossless approach
of Arnanki et al [21] that was specifically designed for
hyperspectral imagery, and has been evaluated in groundside
FPGA testbeds. Lossy compression techniques that do not
exploit endmember discovery provide compression ratios up
to 20 or more [20], [68]. These approaches are typically based
on wavelet decompositions or vector quantization. Several
have been implemented in FPGAs, though current missions
typically perform compression using the main flight processor.

Regardless of the computing architecture onboard feature
detection and mapping could play a complementary role along-
side conventional compression methods. Immediately after
acquisition, onboard processing could localize novel features
to trigger opportunistic followup actions. For instance, mission
operators could specify target signatures deserving additional
data collection [33]. Alternatively, missions could cultivate a
library of observed spectra and trigger followup actions for any
novel signals. Such approaches could respond to time-critical
science opportunities despite intermittent communications and
light time delays. At downlink, scene summary products
could reduce data volumes an order of magnitude or more
beyond typical lossy compression. These summaries could
help prioritize the eventual downlink of full data cubes using
more typical compression strategies.

V. CONCLUSION

Imaging spectrometers can play a key role in planetary
exploration. However, communications delays and bandwidth
limits mean that spacecraft autonomy will be important to
realize their full potential. To our knowledge, the experiments
described here are the first instance of autonomous spacecraft
detection of spectral endmembers, and the first hyperspectral
mineralogical mapping onboard a spacecraft. Overall we find
that the EO-1 system produces interpretable summaries for
sites of mineralogical and astrobiological interest. Identical
spacecraft commands discover the key features of interest
in multiple different scenes, without foreknowledge of the
expected targets. Given system hardware constraints and chal-
lenging imaging conditions this first demonstration shows
reasonable performance and repeatability. Future research will
attempt to realize the concept of adaptive target selection,
pairing these purely unsupervised analyses with and more
specific detection methods such as background-matched filters
for specific signatures. Superpixel representations can improve
noise and efficiency for a wide range of onboard analyses as
long as computational efficiency remains a primary concern.
Many variations are possible, but the EO-1 system serves as
an initial proof of concept. Future autonomy of this kind could
extend the coverage, duty cycle, and science yield of imaging
spectrometers during exploration.
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and implementation of a fast pixel purity index algorithm for endmember
extraction in hyperspectral imagery,” in Proceedings of SPIE, vol. 5995,
2005, pp. 599 508–1.
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Method Compression ratio Feature detection? Examples
Lossless (Software) 3-4 N FL [69]
Lossless (FPGA) 3-4 N FL [21]
Lossy / Wavelet (Software) 20-30 N Wavelet/ICER-3D [70]
Lossy / Wavelet (FPGA) 20-30 N 3D-SPECK [71], SPIHT [20]
Endmember Discovery (Software) >100 Y This work?

Endmember Discovery (FPGA) >100 Y PPI [14], [17], [72], N-FINDR [16]

TABLE V
ALGORITHMS DESIGNED FOR HYPERSPECTRAL IMAGE PROCESSING ONBOARD SPACECRAFT. ?DEPLOYMENTS TO SPACEFLIGHT


